metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[[[bis(2-methyl-1H-imidazole)copper(II)]- μ -1,4-cyclohexanedicarboxylato- $\kappa^2 O, O'$] monohydrate]

Gejihu De

College of Chemistry and Environment Science, Inner Mongolia Normal University, 81 Zhaowuda Road, Hohhot 010022, People's Republic of China. Correspondence e-mail: gejhde@yahoo.com.cn

Received 4 May 2007; accepted 14 May 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.024; wR factor = 0.059; data-to-parameter ratio = 15.7.

In the title compound, $\{[Cu(1,4-chdc)(L)_2] \cdot H_2O\}_n$, where 1,4chdc is the 1,4-cyclohexanedicarboxylate dianion, $C_8H_{10}O_4^{2-}$, and L is 2-methyl-1*H*-imidazole, $C_4H_6N_2$, each Cu^{II} atom is four-coordinated by two N atoms from two L ligands and two O atoms from two 1,4-chdc anions in a distorted tetrahedral geometry. Each 1,4-chdc ligand bridges two neighbouring Cu^{II} atoms in a bidentate mode, forming a unique helical chain. These chains are decorated with L ligands alternately on the two sides. $O-H\cdots O$ and $N-H\cdots O$ hydrogen bonds complete the structure.

Related literature

The related compound, $[Zn(1,4-chdc)(phen)(H_2O)]_n$ (phen is 1,10-phenanthroline), also has a chain structure. The central Zn^{II} cation is coordinated by four water and carboxylate O atoms and two N atoms from the phen ligand. Each 1,4-chdc ligand links two Zn^{II} cations in chelating and monodentate modes, forming an infinite helical chain-like structure with 2_1 helices (Bi et al., 2004).

For related literature, see: Li et al. (2002).

Experimental

Crystal data

 $[Cu(C_8H_{10}O_4)(C_4H_6N_2)_2] \cdot H_2O$ $M_r = 415.93$ Monoclinic, Cc a = 13.179 (3) Å b = 11.897(2) Å c = 12.314 (3) Å $\beta = 96.03(3)$

Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\min} = 0.713, \ \bar{T}_{\max} = 0.758$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.024$	H atoms treated by a mixture of
$wR(F^2) = 0.059$	independent and constrained
S = 1.09	refinement
3853 reflections	$\Delta \rho_{\rm max} = 0.22 \text{ e } \text{\AA}^{-3}$
245 parameters	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$
5 restraints	Absolute structure: Flack (1983)
	1655 Friedel pairs

Flack parameter: 0.011 (10)

983),

V = 1920.1 (7) Å³

Mo $K\alpha$ radiation

 $0.28 \times 0.27 \times 0.24$ mm

9070 measured reflections

3853 independent reflections

3592 reflections with $I > 2\sigma(I)$

 $\mu = 1.17 \text{ mm}^{-1}$

T = 293 (2) K

 $R_{\rm int} = 0.019$

Z = 4

Table 1

Selected geometric parameters (Å, °).

Cu1-N1	1.9692 (17)	Cu1-O2	1.9951 (16)
Cu1-N3	1.9976 (18)	Cu1–O3 ¹	1.9627 (14)
	/ ^		
O3 ¹ -Cu1-N1	155.96 (6)	O3 ⁴ -Cu1-N3	93.83 (7)
O3 ⁱ -Cu1-O2	87.82 (7)	N1-Cu1-N3	94.84 (7)
N1-Cu1-O2	90.97 (8)	O2-Cu1-N3	161.53 (7)
	1 1		

Symmetry code: (i) $x - \frac{1}{2}, y + \frac{1}{2}, z$.

Table 2	
Hydrogen-bond geometry	(Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdots A$
$D1W - HW11 \cdots O4$ $D1W - HW12 \cdots O3^{ii}$ $N2 - H2 \cdots O1^{ii}$ $N4 - H4 \cdots O1W^{iii}$	0.807 (16) 0.822 (16) 0.86 0.86	1.989 (16) 2.115 (17) 1.88 2.01	2.794 (2) 2.921 (2) 2.734 (2) 2.861 (2)	174 (2) 167 (2) 170 172

Symmetry codes: (ii) $x, -y, z + \frac{1}{2}$; (iii) $x - 1, -y, z - \frac{1}{2}$.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

The author thanks the Inner Mongolia Normal University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2052).

References

- Bi, W.-H., Sun, D.-F., Cao, R. & Wang, Y.-Q. (2004). Acta Cryst. E60, m711–m712.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Li, Y. G., Zhang, H., Wang, E., Hao, N., Hu, C., Yu, Y. & Hall, D. (2002). New J. Chem. 26, 1619–1623.

Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). *SHELXS97* and *SHELXL97*. University of Göttingen, Germany.

Acta Cryst. (2007). E63, m1748-m1749 [doi:10.1107/S1600536807023628]

catena-Poly[[[bis(2-methyl-1*H*-imidazole)copper(II)]-*µ*-1,4-cyclohexanedicarboxylato- $\kappa^2 O, O'$] monohydrate]

G. De

Comment

Rigid spacer ligands such as benzenedi- and tri-carboxylates have successfully produced various extended structures with metal cations (Li *et al.*, 2002). However, the studies on the structures composed of flexible carboxylate ligands still remains undeveloped probably because the low symmetry and the flexibility of the ligand make it difficult to control the final structure. We selected 1,4-cyclohexanedicarboxylic acid (1,4-chdcH₂) as a bridging ligand and 2-methyl-1*H*-imidazole (*L*) as a secondary ligand, generating a new helical chain coordination polymer, $[Cu(1,4-chdc)(L)_2]$ ·H₂O, (I), which is reported here.

Selected bond lengths and angles for (I) are given in Table 1. In compound (I), each Cu(II) atom is four-coordinated by two N atoms from two *L* ligands, and two O atoms from two 1,4-chdc molecules in a distorted tetrahedral geometry (Fig. 1). The Cu1—O2 and Cu1—O3ⁱ distances are 1.9951 (16) and 1.9627 (14) Å, respectively (Table 1). The Cu1—N1 and Cu1—N3 distances are 1.9692 (17) and 1.9976 (18) Å, respectively (Table 1). Each 1,4-chdc ligand bridges two neighboring Cu(II) atoms in a bidentate mode, forming a unique helical chain (Fig. 2). These chains are decorated with *L* ligands alternately at two sides. In addition, the O—H…O and N—H…O hydrogen bonds complete structure of (I) (Table 2).

Experimental

A mixture of $CuCl_2 2H_2O$ (0.5 mmol), 1,4-chdc acid (0.5 mmol), and *L* (0.5 mmol) was adjusted to pH=6 by addition of aqueous NaOH solution. The resulting solution was filtered, the filtrate was allowed to stand in air at room temperature for two weeks, and the blue crystals of (I) were obtained (yield 31% based on Cu).

Refinement

All H atoms were positioned geometrically (N—H = 0.86 Å and C—H = 0.93–0.98 Å) and refined as riding, with $U_{iso}(H)=1.2U_{eq}(\text{carrier})$. The water H-atoms were located in a difference Fourier map, and were refined with distance restraints of O–H = 0.85 Å; their temperature factors were tied to those of parent atoms by a factor of 1.2.

Figures

Fig. 1. The structure of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry code: (i) x - 1/2, y + 1/2, z.

Fig. 2. View of the chain structure in (I).

catena-Poly[[[bis(2-methyl-1*H*-imidazole)copper(II)] - μ -1,4-cyclohexanedicarboxylato- $\kappa^2 O$,O'] monohydrate]

 $F_{000} = 868$

 $\theta = 3.2-27.5^{\circ}$ $\mu = 1.17 \text{ mm}^{-1}$ T = 293 (2) KBlock, blue

 $D_{\rm x} = 1.439 \text{ Mg m}^{-3}$ Mo *K* α radiation $\lambda = 0.71073 \text{ Å}$

 $0.28 \times 0.27 \times 0.24 \text{ mm}$

Cell parameters from 8581 reflections

Crystal data
$[Cu(C_8H_{10}O_4)(C_4H_6N_2)_2] \cdot H_2O$
$M_r = 415.93$
Monoclinic, Cc
Hall symbol: C -2yc
a = 13.179 (3) Å
<i>b</i> = 11.897 (2) Å
c = 12.314 (3) Å
$\beta = 96.03 \ (3)^{\circ}$
$V = 1920.1 (7) \text{ Å}^3$
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer	3853 independent reflections
Radiation source: rotating anode	3592 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.019$
Detector resolution: 10.0 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}$
T = 293(2) K	$\theta_{\min} = 3.1^{\circ}$
ω scan	$h = -17 \rightarrow 17$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$k = -15 \rightarrow 15$
$T_{\min} = 0.713, T_{\max} = 0.758$	$l = -15 \rightarrow 15$
9070 measured reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.024$	$w = 1/[\sigma^2(F_o^2) + (0.0309P)^2 + 0.0676P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.059$	$(\Delta/\sigma)_{\rm max} < 0.001$
<i>S</i> = 1.09	$\Delta \rho_{max} = 0.22 \text{ e } \text{\AA}^{-3}$

3853 reflections	$\Delta \rho_{\rm min} = -0.21 \ {\rm e} \ {\rm \AA}^{-3}$
245 parameters	Extinction correction: none
5 restraints	Absolute structure: Flack (1983), 1655 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.011 (10)
Secondary atom site location: difference Fourier map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.19772 (16)	0.23174 (15)	0.28646 (19)	0.0282 (4)
C2	0.30024 (17)	0.25386 (14)	0.2433 (2)	0.0329 (5)
H2A	0.2942	0.3261	0.2050	0.039*
C3	0.38580 (18)	0.26687 (17)	0.3369 (2)	0.0396 (5)
НЗА	0.3637	0.3182	0.3909	0.047*
H3B	0.4453	0.2993	0.3086	0.047*
C4	0.41519 (17)	0.15402 (17)	0.39159 (18)	0.0373 (5)
H4A	0.4715	0.1651	0.4479	0.045*
H4B	0.3578	0.1247	0.4260	0.045*
C5	0.44610 (15)	0.06954 (15)	0.30770 (16)	0.0278 (4)
Н5	0.5051	0.1011	0.2762	0.033*
C6	0.36148 (17)	0.05469 (16)	0.21444 (17)	0.0326 (4)
H6A	0.3029	0.0197	0.2422	0.039*
H6B	0.3850	0.0052	0.1598	0.039*
C7	0.32944 (18)	0.16732 (18)	0.16160 (17)	0.0370 (5)
H7A	0.3853	0.1966	0.1246	0.044*
H7B	0.2718	0.1552	0.1071	0.044*
C8	0.47826 (14)	-0.04401 (15)	0.35574 (16)	0.0281 (4)
C9	0.10618 (19)	0.22595 (19)	0.6122 (2)	0.0377 (5)
Н9	0.1056	0.3037	0.6201	0.045*
C10	0.1344 (2)	0.1525 (2)	0.69177 (18)	0.0445 (6)
H10	0.1569	0.1691	0.7641	0.053*
C11	0.09062 (17)	0.06032 (17)	0.54026 (17)	0.0346 (4)
C12	0.0745 (3)	-0.0340 (2)	0.4619 (2)	0.0602 (8)
H12A	0.0586	-0.1010	0.5002	0.090*
H12B	0.1354	-0.0458	0.4270	0.090*
H12C	0.0190	-0.0162	0.4078	0.090*

C13	-0.15859 (19)	0.1245 (2)	0.43684 (19)	0.0414 (5)
H13	-0.1426	0.1338	0.5117	0.050*
C14	-0.23970 (19)	0.0679 (2)	0.3894 (2)	0.0466 (6)
H14	-0.2896	0.0317	0.4246	0.056*
C15	-0.15176 (16)	0.13368 (17)	0.26216 (17)	0.0337 (4)
C16	-0.1217 (2)	0.1605 (3)	0.15148 (18)	0.0561 (7)
H16A	-0.1682	0.1248	0.0969	0.084*
H16B	-0.0538	0.1336	0.1459	0.084*
H16C	-0.1238	0.2404	0.1405	0.084*
N1	0.07791 (14)	0.16816 (14)	0.51644 (14)	0.0318 (4)
N2	0.12344 (16)	0.04764 (15)	0.64560 (15)	0.0392 (4)
H2	0.1356	-0.0153	0.6788	0.047*
N3	-0.10236 (13)	0.16677 (14)	0.35673 (14)	0.0316 (4)
N4	-0.23445 (14)	0.07396 (16)	0.28022 (16)	0.0395 (4)
H4	-0.2772	0.0444	0.2308	0.047*
01	0.13847 (12)	0.15720 (12)	0.24666 (14)	0.0410 (4)
02	0.17380 (11)	0.29511 (12)	0.36217 (13)	0.0352 (3)
O1W	0.61751 (13)	0.03906 (15)	0.63232 (14)	0.0424 (4)
03	0.48379 (11)	-0.12457 (11)	0.28814 (11)	0.0329 (3)
O4	0.49861 (13)	-0.05853 (13)	0.45594 (12)	0.0434 (4)
Cu1	0.03143 (3)	0.246810 (16)	0.37949 (3)	0.02601 (6)
HW11	0.5812 (18)	0.015 (2)	0.5807 (15)	0.034 (6)*
HW12	0.5816 (18)	0.0736 (19)	0.6717 (17)	0.038 (7)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0256 (10)	0.0215 (8)	0.0373 (11)	0.0054 (7)	0.0011 (8)	0.0044 (8)
C2	0.0296 (11)	0.0242 (9)	0.0456 (12)	0.0057 (7)	0.0081 (9)	0.0061 (8)
C3	0.0290 (11)	0.0260 (9)	0.0640 (16)	-0.0004 (8)	0.0063 (10)	-0.0086 (10)
C4	0.0340 (12)	0.0330 (10)	0.0428 (12)	0.0073 (8)	-0.0061 (9)	-0.0122 (9)
C5	0.0235 (10)	0.0260 (8)	0.0335 (10)	0.0018 (7)	0.0009 (8)	-0.0001 (8)
C6	0.0350 (11)	0.0295 (9)	0.0321 (10)	0.0095 (8)	-0.0021 (8)	-0.0033 (8)
C7	0.0375 (12)	0.0393 (11)	0.0344 (10)	0.0117 (9)	0.0052 (9)	0.0064 (9)
C8	0.0213 (10)	0.0298 (9)	0.0323 (10)	0.0017 (7)	-0.0013 (8)	0.0020 (8)
C9	0.0404 (13)	0.0341 (9)	0.0370 (12)	-0.0006 (9)	-0.0032 (9)	-0.0015 (9)
C10	0.0533 (15)	0.0444 (12)	0.0335 (11)	0.0018 (10)	-0.0062 (10)	0.0007 (10)
C11	0.0345 (12)	0.0303 (10)	0.0377 (11)	-0.0027 (8)	-0.0016 (9)	0.0052 (9)
C12	0.087 (2)	0.0346 (12)	0.0555 (16)	-0.0004 (13)	-0.0105 (15)	-0.0039 (12)
C13	0.0446 (14)	0.0477 (12)	0.0329 (10)	-0.0109 (10)	0.0085 (9)	0.0005 (10)
C14	0.0381 (13)	0.0501 (13)	0.0522 (14)	-0.0147 (10)	0.0077 (11)	0.0042 (12)
C15	0.0295 (11)	0.0382 (10)	0.0323 (10)	0.0006 (8)	-0.0028 (8)	-0.0032 (9)
C16	0.0512 (16)	0.086 (2)	0.0310 (11)	-0.0052 (14)	0.0015 (11)	-0.0031 (13)
N1	0.0335 (9)	0.0281 (8)	0.0325 (8)	-0.0024 (7)	-0.0029 (7)	0.0039 (7)
N2	0.0431 (11)	0.0339 (9)	0.0389 (10)	0.0014 (8)	-0.0041 (8)	0.0122 (8)
N3	0.0285 (9)	0.0347 (8)	0.0311 (9)	-0.0054 (7)	0.0004 (7)	0.0009 (7)
N4	0.0316 (10)	0.0413 (9)	0.0435 (10)	-0.0056 (7)	-0.0062 (8)	-0.0044 (9)
01	0.0329 (8)	0.0346 (7)	0.0563 (10)	-0.0038 (6)	0.0080 (7)	-0.0166 (7)

02	0.0315 (8)	0.0306 (7)	0.0444 (9)	-0.0022 (6)	0.0088 (6)	-0.0087 (7)
O1W	0.0373 (9)	0.0517 (9)	0.0370 (9)	0.0068 (8)	-0.0016 (7)	-0.0061 (8)
O3	0.0413 (9)	0.0244 (6)	0.0320 (7)	0.0060 (6)	-0.0015 (6)	0.0018 (6)
O4	0.0574 (11)	0.0431 (8)	0.0283 (7)	0.0119 (7)	-0.0022 (7)	-0.0007 (7)
Cu1	0.02640 (10)	0.02329 (9)	0.02761 (10)	-0.00107 (9)	-0.00064 (7)	0.00362 (9)
Geometric paran	neters (Å, °)					
C1—O1		1.247 (2)	C10—	·H10	0.9	300
C1—O2		1.264 (3)	C11—	N1	1.3	23 (3)
C1—C2		1.526 (3)	C11—	N2	1.3	32 (3)
C2—C7		1.517 (3)	C11—	C12	1.4	80 (3)
C2—C3		1.533 (4)	C12—	H12A	0.9	600
C2—H2A		0.9800	C12—	H12B	0.9	600
C3—C4		1.534 (3)	C12—	H12C	0.9	600
С3—НЗА		0.9700	C13—	·C14	1.3	44 (3)
С3—Н3В		0.9700	C13—	N3	1.3	89 (3)
C4—C5		1.527 (3)	C13—	·H13	0.9	300
C4—H4A		0.9700	C14—	N4	1.3	56 (3)
C4—H4B		0.9700	C14—	H14	0.9	300
C5—C8		1.517 (3)	C15—	N3	1.3	33 (3)
C5—C6		1.525 (3)	C15—	N4	1.3	39 (3)
С5—Н5		0.9800	C15—	·C16	1.4	93 (3)
C6—C7		1.530 (3)	C16—	H16A	0.9	600
С6—Н6А		0.9700	C16—	H16B	0.9	600
С6—Н6В		0.9700	C16—	H16C	0.9	600
C7—H7A		0.9700	Cu1—	N1	1.9	692 (17)
С7—Н7В		0.9700	N2—H	12	0.8	600
C8—O4		1.247 (2)	Cu1—	N3	1.9	976 (18)
C8—O3		1.277 (2)	N4—H	14	0.8	600
C9—C10		1.336 (3)	Cu1—	-02	1.9	951 (16)
C9—N1		1.382 (3)	O1W-	-HW11	0.807 (16)	
С9—Н9		0.9300	O1W-	-HW12	0.8	22 (16)
C10—N2		1.372 (3)	Cu1—	O3 ⁱ	1.9	627 (14)
O1—C1—O2		121.3 (2)	N2—0	С10—Н10	126	5.8
O1—C1—C2		121.78 (19)	N1—0	C11—N2	110	0.27 (19)
O2—C1—C2		116.89 (18)	N1—0	C11—C12	125	5.7 (2)
C7—C2—C1		114.17 (18)	N2—0	C11—C12	124	1.0 (2)
С7—С2—С3		110.44 (18)	C11—	C12—H12A	109	0.5
C1—C2—C3		111.4 (2)	C11—	C12—H12B	109	9.5
C7—C2—H2A		106.8	H12A-		109	0.5
C1—C2—H2A		106.8	C11—	C12—H12C	109	0.5
C3—C2—H2A		106.8	H12A-		109	0.5
C2—C3—C4		111.95 (17)	H12B-		109	0.5
С2—С3—НЗА		109.2	C14—	-C13—N3	109	9.4 (2)
С4—С3—НЗА		109.2	C14—	C13—H13	125	5.3
С2—С3—Н3В		109.2	N3—0	С13—Н13	125	5.3
С4—С3—Н3В		109.2	C13—	C14—N4	106	5.5 (2)
НЗА—СЗ—НЗВ		107.9	C13—	C14—H14	126	5.8

C5—C4—C3	110.6 (2)	N4	126.8			
C5—C4—H4A	109.5	N3—C15—N4	110.06 (19)			
C3—C4—H4A	109.5	N3-C15-C16	125.6 (2)			
C5—C4—H4B	109.5	N4-C15-C16	124.31 (19)			
С3—С4—Н4В	109.5	C15-C16-H16A	109.5			
H4A—C4—H4B	108.1	C15—C16—H16B	109.5			
C8—C5—C6	110.05 (15)	H16A—C16—H16B	109.5			
C8—C5—C4	113.94 (17)	C15—C16—H16C	109.5			
C6—C5—C4	111.09 (16)	H16A—C16—H16C	109.5			
С8—С5—Н5	107.1	H16B—C16—H16C	109.5			
С6—С5—Н5	107.1	C11—N1—C9	106.06 (17)			
С4—С5—Н5	107.1	C11—N1—Cu1	132.18 (14)			
C5—C6—C7	111.49 (17)	C9—N1—Cu1	121.75 (14)			
С5—С6—Н6А	109.3	C11—N2—C10	108.04 (18)			
С7—С6—Н6А	109.3	C11—N2—H2	126.0			
С5—С6—Н6В	109.3	C10—N2—H2	126.0			
С7—С6—Н6В	109.3	C15—N3—C13	105.40 (18)			
H6A—C6—H6B	108.0	C15—N3—Cu1	127.33 (15)			
C2—C7—C6	112.96 (17)	C13—N3—Cu1	127.01 (14)			
С2—С7—Н7А	109.0	C15—N4—C14	108.68 (18)			
С6—С7—Н7А	109.0	C15—N4—H4	125.7			
С2—С7—Н7В	109.0	C14—N4—H4	125.7			
С6—С7—Н7В	109.0	C1—O2—Cu1	102.54 (13)			
H7A—C7—H7B	107.8	HW11—O1W—HW12	108 (2)			
O4—C8—O3	121.34 (17)	C8—O3—Cu1 ⁱⁱ	104.38 (12)			
O4—C8—C5	122.11 (17)	O3 ⁱ —Cu1—N1	155.96 (6)			
O3—C8—C5	116.55 (16)	O3 ⁱ —Cu1—O2	87.82 (7)			
C10—C9—N1	109.24 (19)	N1—Cu1—O2	90.97 (8)			
С10—С9—Н9	125.4	O3 ⁱ —Cu1—N3	93.83 (7)			
N1—C9—H9	125.4	N1—Cu1—N3	94.84 (7)			
C9—C10—N2	106.37 (19)	O2—Cu1—N3	161.53 (7)			
С9—С10—Н10	126.8					
Symmetry adds: (i) $y = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} (ii) + \frac{1}{2} + \frac{1}{2} = \frac{1}{2}$						

Symmetry codes: (i) x-1/2, y+1/2, z; (ii) x+1/2, y-1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O1W—HW11…O4	0.807 (16)	1.989 (16)	2.794 (2)	174 (2)
O1W—HW12····O3 ⁱⁱⁱ	0.822 (16)	2.115 (17)	2.921 (2)	167 (2)
N2—H2···O1 ⁱⁱⁱ	0.86	1.88	2.734 (2)	170
N4—H4····O1W ^{iv}	0.86	2.01	2.861 (2)	172
(1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,	1/2			

Symmetry codes: (iii) x, -y, z+1/2; (iv) x-1, -y, z-1/2.

Fig. 1

